3.4.42 \(\int \frac {x^4 \sinh ^{-1}(a x)^3}{\sqrt {1+a^2 x^2}} \, dx\) [342]

Optimal. Leaf size=187 \[ \frac {45 x^2}{128 a^3}-\frac {3 x^4}{128 a}-\frac {45 x \sqrt {1+a^2 x^2} \sinh ^{-1}(a x)}{64 a^4}+\frac {3 x^3 \sqrt {1+a^2 x^2} \sinh ^{-1}(a x)}{32 a^2}+\frac {45 \sinh ^{-1}(a x)^2}{128 a^5}+\frac {9 x^2 \sinh ^{-1}(a x)^2}{16 a^3}-\frac {3 x^4 \sinh ^{-1}(a x)^2}{16 a}-\frac {3 x \sqrt {1+a^2 x^2} \sinh ^{-1}(a x)^3}{8 a^4}+\frac {x^3 \sqrt {1+a^2 x^2} \sinh ^{-1}(a x)^3}{4 a^2}+\frac {3 \sinh ^{-1}(a x)^4}{32 a^5} \]

[Out]

45/128*x^2/a^3-3/128*x^4/a+45/128*arcsinh(a*x)^2/a^5+9/16*x^2*arcsinh(a*x)^2/a^3-3/16*x^4*arcsinh(a*x)^2/a+3/3
2*arcsinh(a*x)^4/a^5-45/64*x*arcsinh(a*x)*(a^2*x^2+1)^(1/2)/a^4+3/32*x^3*arcsinh(a*x)*(a^2*x^2+1)^(1/2)/a^2-3/
8*x*arcsinh(a*x)^3*(a^2*x^2+1)^(1/2)/a^4+1/4*x^3*arcsinh(a*x)^3*(a^2*x^2+1)^(1/2)/a^2

________________________________________________________________________________________

Rubi [A]
time = 0.33, antiderivative size = 187, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 4, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {5812, 5783, 5776, 30} \begin {gather*} \frac {3 \sinh ^{-1}(a x)^4}{32 a^5}+\frac {45 \sinh ^{-1}(a x)^2}{128 a^5}+\frac {45 x^2}{128 a^3}+\frac {9 x^2 \sinh ^{-1}(a x)^2}{16 a^3}+\frac {x^3 \sqrt {a^2 x^2+1} \sinh ^{-1}(a x)^3}{4 a^2}+\frac {3 x^3 \sqrt {a^2 x^2+1} \sinh ^{-1}(a x)}{32 a^2}-\frac {3 x \sqrt {a^2 x^2+1} \sinh ^{-1}(a x)^3}{8 a^4}-\frac {45 x \sqrt {a^2 x^2+1} \sinh ^{-1}(a x)}{64 a^4}-\frac {3 x^4}{128 a}-\frac {3 x^4 \sinh ^{-1}(a x)^2}{16 a} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(x^4*ArcSinh[a*x]^3)/Sqrt[1 + a^2*x^2],x]

[Out]

(45*x^2)/(128*a^3) - (3*x^4)/(128*a) - (45*x*Sqrt[1 + a^2*x^2]*ArcSinh[a*x])/(64*a^4) + (3*x^3*Sqrt[1 + a^2*x^
2]*ArcSinh[a*x])/(32*a^2) + (45*ArcSinh[a*x]^2)/(128*a^5) + (9*x^2*ArcSinh[a*x]^2)/(16*a^3) - (3*x^4*ArcSinh[a
*x]^2)/(16*a) - (3*x*Sqrt[1 + a^2*x^2]*ArcSinh[a*x]^3)/(8*a^4) + (x^3*Sqrt[1 + a^2*x^2]*ArcSinh[a*x]^3)/(4*a^2
) + (3*ArcSinh[a*x]^4)/(32*a^5)

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 5776

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*((a + b*ArcS
inh[c*x])^n/(d*(m + 1))), x] - Dist[b*c*(n/(d*(m + 1))), Int[(d*x)^(m + 1)*((a + b*ArcSinh[c*x])^(n - 1)/Sqrt[
1 + c^2*x^2]), x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1]

Rule 5783

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(1/(b*c*(n + 1)))*S
imp[Sqrt[1 + c^2*x^2]/Sqrt[d + e*x^2]]*(a + b*ArcSinh[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ
[e, c^2*d] && NeQ[n, -1]

Rule 5812

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[
f*(f*x)^(m - 1)*(d + e*x^2)^(p + 1)*((a + b*ArcSinh[c*x])^n/(e*(m + 2*p + 1))), x] + (-Dist[f^2*((m - 1)/(c^2*
(m + 2*p + 1))), Int[(f*x)^(m - 2)*(d + e*x^2)^p*(a + b*ArcSinh[c*x])^n, x], x] - Dist[b*f*(n/(c*(m + 2*p + 1)
))*Simp[(d + e*x^2)^p/(1 + c^2*x^2)^p], Int[(f*x)^(m - 1)*(1 + c^2*x^2)^(p + 1/2)*(a + b*ArcSinh[c*x])^(n - 1)
, x], x]) /; FreeQ[{a, b, c, d, e, f, p}, x] && EqQ[e, c^2*d] && GtQ[n, 0] && IGtQ[m, 1] && NeQ[m + 2*p + 1, 0
]

Rubi steps

\begin {align*} \int \frac {x^4 \sinh ^{-1}(a x)^3}{\sqrt {1+a^2 x^2}} \, dx &=\frac {x^3 \sqrt {1+a^2 x^2} \sinh ^{-1}(a x)^3}{4 a^2}-\frac {3 \int \frac {x^2 \sinh ^{-1}(a x)^3}{\sqrt {1+a^2 x^2}} \, dx}{4 a^2}-\frac {3 \int x^3 \sinh ^{-1}(a x)^2 \, dx}{4 a}\\ &=-\frac {3 x^4 \sinh ^{-1}(a x)^2}{16 a}-\frac {3 x \sqrt {1+a^2 x^2} \sinh ^{-1}(a x)^3}{8 a^4}+\frac {x^3 \sqrt {1+a^2 x^2} \sinh ^{-1}(a x)^3}{4 a^2}+\frac {3}{8} \int \frac {x^4 \sinh ^{-1}(a x)}{\sqrt {1+a^2 x^2}} \, dx+\frac {3 \int \frac {\sinh ^{-1}(a x)^3}{\sqrt {1+a^2 x^2}} \, dx}{8 a^4}+\frac {9 \int x \sinh ^{-1}(a x)^2 \, dx}{8 a^3}\\ &=\frac {3 x^3 \sqrt {1+a^2 x^2} \sinh ^{-1}(a x)}{32 a^2}+\frac {9 x^2 \sinh ^{-1}(a x)^2}{16 a^3}-\frac {3 x^4 \sinh ^{-1}(a x)^2}{16 a}-\frac {3 x \sqrt {1+a^2 x^2} \sinh ^{-1}(a x)^3}{8 a^4}+\frac {x^3 \sqrt {1+a^2 x^2} \sinh ^{-1}(a x)^3}{4 a^2}+\frac {3 \sinh ^{-1}(a x)^4}{32 a^5}-\frac {9 \int \frac {x^2 \sinh ^{-1}(a x)}{\sqrt {1+a^2 x^2}} \, dx}{32 a^2}-\frac {9 \int \frac {x^2 \sinh ^{-1}(a x)}{\sqrt {1+a^2 x^2}} \, dx}{8 a^2}-\frac {3 \int x^3 \, dx}{32 a}\\ &=-\frac {3 x^4}{128 a}-\frac {45 x \sqrt {1+a^2 x^2} \sinh ^{-1}(a x)}{64 a^4}+\frac {3 x^3 \sqrt {1+a^2 x^2} \sinh ^{-1}(a x)}{32 a^2}+\frac {9 x^2 \sinh ^{-1}(a x)^2}{16 a^3}-\frac {3 x^4 \sinh ^{-1}(a x)^2}{16 a}-\frac {3 x \sqrt {1+a^2 x^2} \sinh ^{-1}(a x)^3}{8 a^4}+\frac {x^3 \sqrt {1+a^2 x^2} \sinh ^{-1}(a x)^3}{4 a^2}+\frac {3 \sinh ^{-1}(a x)^4}{32 a^5}+\frac {9 \int \frac {\sinh ^{-1}(a x)}{\sqrt {1+a^2 x^2}} \, dx}{64 a^4}+\frac {9 \int \frac {\sinh ^{-1}(a x)}{\sqrt {1+a^2 x^2}} \, dx}{16 a^4}+\frac {9 \int x \, dx}{64 a^3}+\frac {9 \int x \, dx}{16 a^3}\\ &=\frac {45 x^2}{128 a^3}-\frac {3 x^4}{128 a}-\frac {45 x \sqrt {1+a^2 x^2} \sinh ^{-1}(a x)}{64 a^4}+\frac {3 x^3 \sqrt {1+a^2 x^2} \sinh ^{-1}(a x)}{32 a^2}+\frac {45 \sinh ^{-1}(a x)^2}{128 a^5}+\frac {9 x^2 \sinh ^{-1}(a x)^2}{16 a^3}-\frac {3 x^4 \sinh ^{-1}(a x)^2}{16 a}-\frac {3 x \sqrt {1+a^2 x^2} \sinh ^{-1}(a x)^3}{8 a^4}+\frac {x^3 \sqrt {1+a^2 x^2} \sinh ^{-1}(a x)^3}{4 a^2}+\frac {3 \sinh ^{-1}(a x)^4}{32 a^5}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.06, size = 121, normalized size = 0.65 \begin {gather*} \frac {45 a^2 x^2-3 a^4 x^4+6 a x \sqrt {1+a^2 x^2} \left (-15+2 a^2 x^2\right ) \sinh ^{-1}(a x)+\left (45+72 a^2 x^2-24 a^4 x^4\right ) \sinh ^{-1}(a x)^2+16 a x \sqrt {1+a^2 x^2} \left (-3+2 a^2 x^2\right ) \sinh ^{-1}(a x)^3+12 \sinh ^{-1}(a x)^4}{128 a^5} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(x^4*ArcSinh[a*x]^3)/Sqrt[1 + a^2*x^2],x]

[Out]

(45*a^2*x^2 - 3*a^4*x^4 + 6*a*x*Sqrt[1 + a^2*x^2]*(-15 + 2*a^2*x^2)*ArcSinh[a*x] + (45 + 72*a^2*x^2 - 24*a^4*x
^4)*ArcSinh[a*x]^2 + 16*a*x*Sqrt[1 + a^2*x^2]*(-3 + 2*a^2*x^2)*ArcSinh[a*x]^3 + 12*ArcSinh[a*x]^4)/(128*a^5)

________________________________________________________________________________________

Maple [F]
time = 180.00, size = 0, normalized size = 0.00 \[\int \frac {x^{4} \arcsinh \left (a x \right )^{3}}{\sqrt {a^{2} x^{2}+1}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^4*arcsinh(a*x)^3/(a^2*x^2+1)^(1/2),x)

[Out]

int(x^4*arcsinh(a*x)^3/(a^2*x^2+1)^(1/2),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*arcsinh(a*x)^3/(a^2*x^2+1)^(1/2),x, algorithm="maxima")

[Out]

integrate(x^4*arcsinh(a*x)^3/sqrt(a^2*x^2 + 1), x)

________________________________________________________________________________________

Fricas [A]
time = 0.41, size = 166, normalized size = 0.89 \begin {gather*} -\frac {3 \, a^{4} x^{4} - 16 \, {\left (2 \, a^{3} x^{3} - 3 \, a x\right )} \sqrt {a^{2} x^{2} + 1} \log \left (a x + \sqrt {a^{2} x^{2} + 1}\right )^{3} - 45 \, a^{2} x^{2} - 12 \, \log \left (a x + \sqrt {a^{2} x^{2} + 1}\right )^{4} + 3 \, {\left (8 \, a^{4} x^{4} - 24 \, a^{2} x^{2} - 15\right )} \log \left (a x + \sqrt {a^{2} x^{2} + 1}\right )^{2} - 6 \, {\left (2 \, a^{3} x^{3} - 15 \, a x\right )} \sqrt {a^{2} x^{2} + 1} \log \left (a x + \sqrt {a^{2} x^{2} + 1}\right )}{128 \, a^{5}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*arcsinh(a*x)^3/(a^2*x^2+1)^(1/2),x, algorithm="fricas")

[Out]

-1/128*(3*a^4*x^4 - 16*(2*a^3*x^3 - 3*a*x)*sqrt(a^2*x^2 + 1)*log(a*x + sqrt(a^2*x^2 + 1))^3 - 45*a^2*x^2 - 12*
log(a*x + sqrt(a^2*x^2 + 1))^4 + 3*(8*a^4*x^4 - 24*a^2*x^2 - 15)*log(a*x + sqrt(a^2*x^2 + 1))^2 - 6*(2*a^3*x^3
 - 15*a*x)*sqrt(a^2*x^2 + 1)*log(a*x + sqrt(a^2*x^2 + 1)))/a^5

________________________________________________________________________________________

Sympy [A]
time = 0.91, size = 185, normalized size = 0.99 \begin {gather*} \begin {cases} - \frac {3 x^{4} \operatorname {asinh}^{2}{\left (a x \right )}}{16 a} - \frac {3 x^{4}}{128 a} + \frac {x^{3} \sqrt {a^{2} x^{2} + 1} \operatorname {asinh}^{3}{\left (a x \right )}}{4 a^{2}} + \frac {3 x^{3} \sqrt {a^{2} x^{2} + 1} \operatorname {asinh}{\left (a x \right )}}{32 a^{2}} + \frac {9 x^{2} \operatorname {asinh}^{2}{\left (a x \right )}}{16 a^{3}} + \frac {45 x^{2}}{128 a^{3}} - \frac {3 x \sqrt {a^{2} x^{2} + 1} \operatorname {asinh}^{3}{\left (a x \right )}}{8 a^{4}} - \frac {45 x \sqrt {a^{2} x^{2} + 1} \operatorname {asinh}{\left (a x \right )}}{64 a^{4}} + \frac {3 \operatorname {asinh}^{4}{\left (a x \right )}}{32 a^{5}} + \frac {45 \operatorname {asinh}^{2}{\left (a x \right )}}{128 a^{5}} & \text {for}\: a \neq 0 \\0 & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**4*asinh(a*x)**3/(a**2*x**2+1)**(1/2),x)

[Out]

Piecewise((-3*x**4*asinh(a*x)**2/(16*a) - 3*x**4/(128*a) + x**3*sqrt(a**2*x**2 + 1)*asinh(a*x)**3/(4*a**2) + 3
*x**3*sqrt(a**2*x**2 + 1)*asinh(a*x)/(32*a**2) + 9*x**2*asinh(a*x)**2/(16*a**3) + 45*x**2/(128*a**3) - 3*x*sqr
t(a**2*x**2 + 1)*asinh(a*x)**3/(8*a**4) - 45*x*sqrt(a**2*x**2 + 1)*asinh(a*x)/(64*a**4) + 3*asinh(a*x)**4/(32*
a**5) + 45*asinh(a*x)**2/(128*a**5), Ne(a, 0)), (0, True))

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*arcsinh(a*x)^3/(a^2*x^2+1)^(1/2),x, algorithm="giac")

[Out]

integrate(x^4*arcsinh(a*x)^3/sqrt(a^2*x^2 + 1), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {x^4\,{\mathrm {asinh}\left (a\,x\right )}^3}{\sqrt {a^2\,x^2+1}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^4*asinh(a*x)^3)/(a^2*x^2 + 1)^(1/2),x)

[Out]

int((x^4*asinh(a*x)^3)/(a^2*x^2 + 1)^(1/2), x)

________________________________________________________________________________________